Fundamental Constituents of Nature ?

" can be characterized by

examining how they transform

under the symmetries as

translations, rotations, ... " Mass Spin

E. Wigner

2

- Higgs Boson (origin of mass) Π
 - Photon, W&Z Bosons, Gluon (EM, Weak, Strong interactions)
 - Graviton (gravitational interaction)

Massless particles → Gauge Symmetry

Massive higher spin particles : composites

Quantization of Gravity

Quantum Theory of Gravity with infinitely many higher spin particles

• Fundamental constituent : string

✓ Different vibration \rightarrow Different particle (*m*, *s*)

- ✓ Candidate for Unification
- Higher spin particles are all massive

Quantum Theory of Gravity with infinitely many higher spin particles

- Higher spin particles are all massless
- Symmetry Breaking → String Theory
- Infinite Gauge Symmetries
 - \rightarrow severe restriction on interactions
 - \rightarrow (almost) uniquely fixes the theory

