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Field theories describing massless HS ?

Recent Intro. / Review : 

[0503128] (Vasiliev eq.)

[1007.0435] (General review)

[1112.4285] (ST aspect)

• massless spin 1  ➜  Gauge theory  (internal symmetry) 

• massless spin 2 ➜  Gravity  (isometry) 

• massless spin s  ➜   ?? Unbroken symmetry of ST ?

Field theories describing HS ?



AdS/CFT

HS theory in AdS

boun
CFT on the

dary

• Vasiliev eq. in AdS4

• 3d Vector O(N)

• PV eq. in AdS3

• WN minimal model

Review :  [1208.4036], 

[1208.5182]



But, HS interactions do not work, maybe

• No long-range force by HS  [Weinberg ’64]


• No gravitational coupling for HS  [Aragone-Deser ’79]

Free theory: possible (up to a few subtleties)

in flat 
space

HS interactions DO work in (A)dS !

• Gravitational coupling for HS (cubic)  [Fradkin-Vasiliev ’87]


• Equations for HS (full order)  [Vasiliev ’90]



Vasiliev’s equations

• à la Cartan   (ex. Gravity :  gauge  the  isometry  algebra)

• HS algebra :   HS  generalization  of  the  isometry  algebra 

• “ Gauge theory of HS algebra ”

Constructive approach (bottom-up)

• Free theory of HS
• Order-by-order construction  
                        of interacting vertices

S(2)

S(3), S(4), . . .

• AdS/CFT and CFT bootstrap program



Constructive approach:

✓  General  procedure  for  interacting  actions  of  HS
Give me field contents, 

I will see which (interacting) theories are possible.

✓  Deformations  of  HS symmetries  induced  by S(3)

✓  Cubic interactions          (only result)S(3)

Cubic interactions & HS symmetries

✓  ‘HS algebras’  associated  with  classical  Lie  algebras

✓  HS algebras  from S(3)

OUTLINE

talk of K. Mkrtchyan (two weeks ago)



= S(2)[�1] + S(2)[�2] + · · ·

Give me field contents, 

I will see which (interacting) theories are possible.

S(2)[�1,�2, . . .]

�(0)� = @ "�(0)S(2) = 0 undergauge sym. :

massless spin s 

(also partially-massless 

     and massive fields  

     but not in this talk)

S = S(2) + S(3) + S(4) + · · ·

�� = �(0)�+ �(1)�+ �(2)�+ · · ·� S = 0 under

PERTURBATIVE	 
EXPANSION

solve one by one from n=3

�(0)S(n) + · · ·+ �(n�1)S(2) = 0



[["1, "2]]
(0)

deformation of 

gauge algebra

�(1)
" �

deformation of 

gauge transformation

�(0)S(3) + �(1)S(2) = 0

More precisely, CUBIC interactions:

⇡ 0S(3)

Gauge Algebra

�["1 �"2]� = �[["1,"2]]� + (trivial sym.)

�(0)

["1
�(1)

"2]
� = �(0)

[["1,"2]](0)
�

[[ , ]] = [[ , ]](0) + [[ , ]](1) + [[ , ]](2) + · · ·
field-dependent bracket !

S(3)

cubic 

interactions



To Do Lists
✓  For given                       in (A)dS,  

find all  possible                                   S(3)[�1,�2,�3]

�1,�2,�3 To determine     , 

we don’t need the entire field content,

but only the three fields

S(3)

✓  Explore their consequences  (ex. global symmetry)

massless fields of arbi. spin

✓  For each of 
find the corresponding  deformation  of 
- gauge transformation 
- gauge algebra  

S(3)[�1,�2,�3]

�(1)
"i �j

[[ "i , "j ]]
(0) i, j = 1, 2, 3

Technical Difficulties
• Handle arbitrary number of indices
• (A)dS covariant derivatives



Key Ideas/Technics

• Step-by-step construction

  1) Transverse and Traceless part

  2) The rest (unphysical part)

R1,d• Proper adaptation of 

  ambient-space (or embedding) approach

'µ1···µs(x) �M1···Ms(X)

• Auxiliary variables: similar to string oscillators
�(X,U) interactions:  operators ∝@Xi ,@Ui



(Old and New) 

RESULTS



What was known before (incomplete list):

Flat,  Metric-like

Strict (A)dS,  Frame-like

• All any d vertices in light-cone             [Metsaev]

• Identification of gauge-algebra deformation 

     [Bekaert, Boulanger, Lerclerq]

• All vertices in covariant form 

[Manvelyan, Mkrtchyan, Ruehl; Sagnotti, Taronna]

• All vertices in BRST form   [Fotopoulos, Tsulaia; Metsaev]

• All 4d vertices in light-cone       [Brink, 2xBengtsson]

• All 4d vertices                         [Fradkin, Vasiliev]
• All any d non-Abelian vertices              [Vasiliev]



SKIP   TECHNICAL   DETAILS



Let us remark that the couplings of Class II make the fields �2 and �3 charged with respect

to �1 , so they are relevant for HS-algebra multiplets and in general for the classification of

representations of HS algebra. They correspond to the current coupling in [41], since they

can be written as couplings between a gauge field and gauge-invariant Noether current,

generalized Bel-Robinson currents.. The couplings of Class III induce non-trivial defor-

mations �(1)

E
3

, but it vanishes in the flat-space limit. This class includes in particular the

lowest-derivative s�s�2 couplings, namely the gravitational interactions of HS fields: in

(A)dS, the corresponding �(1)

E
3

reproduces the general coordinate covariance for HS fields,

while in the flat-space limit, the latter covariance is lost, so the spin 2 field is found to not

couple gravitationally to HS fields. Therefore, one recognizes the Aragone-Deser problem

[50] and the Fradkin-Vasiliev solution [20, 21] in this framework.

1.3 Organization of paper

The paper is organized as follows. In Section 2 we review the construction of metric-like

HS cubic interactions. In Section 3 we analyze the non-trivial deformations of gauge-

transformation deformations arriving to Table 1. In Section 4 we analyze the gauge-algebra

deformations, while in Section 5 we consider their restriction to global symmetries. In

Section 6 we give some details on the explicit structure of the non-deforming couplings

in (A)dS. Our conclusions, together with discussions on the partially-massless extension

of the classification, are presented in Section 7. The appendices contain some technical

details.

2 Review: cubic interactions

For completeness and in order to fix the notations, we briefly summarize our previous

results. For cubic interactions, that is the n = 3 case of (1.12), the ansatz5 can be further

simplified, removing the ambiguities of integration by parts and field redefinitions, as

S(3)[�1,�2,�3]
TT

=

Z

(A)dS

C(Y, Z)�1(X1, U1) �2(X2, U2) �3(X3, U3)
�

�

�Xi=X
Ui=0

, (2.1)

where C(Y, Z) is a polynomial function of six variables:

Yi := @Ui · @Xi+1

, Zi := @Ui+1

· @Ui�1

[i ' i+ 3] . (2.2)

When one of the fields, say �1, is massless, the cubic interaction must be compatible

with the corresponding gauge symmetry: �(0)

E
1

S(3) + �(1)

E
1

S(2) = 0 . This condition implies

a weaker condition: �(0)

E
1

S(3) ⇡ 0 , where ⇡ is henceforth the equivalence modulo free field

equations as well as traces and divergences. The latter condition can be translated into

the following di↵erential equation:

⇥

Y2 @Z
3

� Y3 @Z
2

� �
�

Y2 @Y
2

� Y3 @Y
3

+ µ
2

�µ
3

2

�

@Y
1

⇤

C(Y, Z) = 0 . (2.3)

5Here, we use the convention that all the fields entering in the interactions are treated as di↵erent fields,

so that no symmetry under field-label interchange is assumed. This convention makes more transparent

the analysis of the present work, while it is equivalent to the convention of a single generating function of

HS fields. Hence, the results obtained in this convention can also account for the self-interaction cases.
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CUBIC INTERACTIONS

# of derivatives :

K(Y,G) =
sminX

n=0

kn Y s1�n
1 Y s2�n

2 Y s3�n
3 Gn

coupling cnst.
• Coupling Fn. | {z }

s1 + s2 + s3 � 2n

• (A)dS effect.
R
(A)dS

�n I� = c�,n ⇤n
R
(A)dS

I�

c�,n = (d+�� 1)(d+�� 3) · · · (d+�� 2n+ 1)

the most general form up to integration by part and field redefinition

C(Y, Z) = e�(Z1@Y2@Y3+Z1Z2@Y3@G+cyc.+Z1Z2Z3@
2
G)K(Y,G)

���
G=YiZi

general solution to the condition �(0)S(3) ⇡ 0



Rµ⌫⇢� Fµ⌫ F⇢�

tr[Fµ
⌫ F

⌫
⇢ F

⇢
µ]

Rµ⌫
⇢� R

⇢�
� R

�
µ⌫ Rµ⌫

⇢� R
⇢�

µ⌫

K = k0 Y 2
1 Y 2

2 Y 2
3 + k1 Y1 Y2 Y3 G+ k2 G2

K = k0 Y1 Y2 Y3 + k1 G

K = k0 Y 2
1 Y2 Y3 + k1 Y1 G

Examples

2�2�2

2�1�1

1�1�1

R

GR

tr[Fµ
⌫ F

⌫
µ]

YM

gµ⌫ g⇢� Fµ⇢ F⌫�

Gravitational  
interaction
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CUBIC INTERACTIONS
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gauge algebra (bracket) deformations

DEFORMATIONS

C̄(Y, Z) = e�(Z1@Y2+Z2@Y1+Z1Z2@G)@Y3K(Y,G)
���
G=Yi Zi

�(1)

E1
�3(X,U)

TT
= � 1

2 ⇧� @Y1C̄(Y, Z)E1(X1, U1)�2(X2, U2)
���Xi=X
Ui=0

gauge transformation deformations

[[E1 , E2 ]](0)
TT
= 1

4 ⇧E (@Y1@Z1 + @Y2@Z2)C̄(Y, Z)E1 E2

���

+ field redefinition !

+ parameter redefinition !

The redefintions exists such that  
and/or                   ? �(1)

Ei
= 0 [[Ei , Ej ]]

(0) = 0

�(1)

[[ , ]](0)



DEFORMATIONS

s1 � s2 � s3

n #∂ δ(1)
E1

δ(1)
E2

δ(1)
E3

C(3)

0 s1 + s2 + s3 = 0 = 0 = 0

Class I
...

...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.

– 4 –

n #∂ δ(1)
E1

δ(1)
E2

δ(1)
E3

C(3)

0 s1 + s2 + s3 = 0 = 0 = 0

Class I
...

...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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• Depending on spins, 
certain classes can be 
empty

• Four different classes 
  of couplings for a given 

             interactions1�s2�s3

RESULT :  

CLASSIFICATION OF  
CUBIC INTERACTIONS



CLASS I

s1 � s2 � s3

R3‣     and 

• Expressible in terms of any two curvatures

R1 R2 R3‣     and R1 ‣     and R2

• Non-deforming            Abelian couplings�(1)
Ei

= 0

n #∂ δ(1)
E1

δ(1)
E2

δ(1)
E3

C(3)

0 s1 + s2 + s3 = 0 = 0 = 0

Class I
...

...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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CLASS IV

• Non-Abelian couplings �(1)
Ei

6= 0

[[Ei , Ej ]]
(0) 6= 0

n #∂ δ(1)
E1

δ(1)
E2

δ(1)
E3

C(3)

0 s1 + s2 + s3 = 0 = 0 = 0

Class I
...

...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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n #∂ δ(1)
E1

δ(1)
E2

δ(1)
E3

C(3)

0 s1 + s2 + s3 = 0 = 0 = 0

Class I
...

...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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CLASS II

s1 � s2 � s3

• Expressible in terms of the curvatures     and R3R2

‣ Generalized Bel-Robinson currents

• Fields 2 and 3 are charged w.r.t field 1 
‣ HS algebra multiplet

• Deforming           , but Abelian couplings�(1)
E1

6= 0

n #∂ δ(1)
E1

δ(1)
E2

δ(1)
E3

C(3)

0 s1 + s2 + s3 = 0 = 0 = 0

Class I
...

...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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n #∂ δ(1)
E1

δ(1)
E2

δ(1)
E3

C(3)

0 s1 + s2 + s3 = 0 = 0 = 0

Class I
...

...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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CLASS III

s1 � s2 � s3

• Non-Abelian couplings with

�(1)
E1

6= 0 �(1)
E2

6= 0

[[E1 , E2 ]]
(0) 6= 0

[[E2 , E3 ]]
(0) = O(⇤)

[[E1 , E3 ]]
(0) = O(⇤)

�(1)
E3

= O(⇤)

n #∂ δ(1)
E1

δ(1)
E2

δ(1)
E3

C(3)

0 s1 + s2 + s3 = 0 = 0 = 0

Class I
...

...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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δ(1)
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0 s1 + s2 + s3 = 0 = 0 = 0
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...
...

...
... ≈ K̃(Yℓ,H12,H23,H31)

s2+s3−s1
2 2 s1 = 0

...
... ℓ = 2 or 3

...
... ̸= 0

...
...

Class II
...

...
...

...
... ≈ K̃(Y1,H12,H23,H31)

s3+s1−s2
2 2 s2

... = 0 = 0
...

...
... ̸= 0 Λ

Class III
...

...
...

...
...

s1+s2−s3
2 2s3

...
... Λ

...
...

...
... ̸= 0

Class IV
...

...
...

...
...

s3 s1 + s2 − s3 ̸= 0 ̸= 0 ̸= 0

Table 1. Classification of cubic interactions (s1 ≥ s2 ≥ s3) according to the deformations of gauge
transformations. Here #∂ is the number of (highest, in the (A)dS case) derivatives involved in C(3) .

is that cubic interactions corresponding to trivial deformations of gauge symmetries are

related to the appearance of a new tensor structure Hij :

Hij = ∂Ui · ∂Xj ∂Uj · ∂Xi − ∂Xi · ∂Xj ∂Ui · ∂Uj . (1.15)

The Hij’s are operators taking the curls of the i-th and j-th fields and contracting them.

They are gauge invariant without making use of the on-shell condition, and hence, they do

not lead to any deformation of the gauge transformations. It turns out that for s1 ≥ s2 ≥ s3
the couplings can be organized as follows:

• Class I : the couplings which can be re-expressed as a function of Hij’s and Y2 (or

Y3) do not deform any of the gauge transformations δ(1)
E1

, δ(1)
E2

and δ(1)
E3
;

• Class II : the couplings which can be re-expressed as a function of Hij’s and Y1 do

not deform the gauge transformations δ(1)
E2

and δ(1)
E3

but δ(1)
E1

;

• Class III & IV : the couplings which cannot be re-expressed as a function of Hij’s

as above always deform all the gauge transformations in (A)dS (in flat space, the

couplings belonging to Class III deform two of the gauge transformations while those

belonging to Class IV deform all of them).

As regards the gauge-algebra deformations, the classification can be stated as follows:

• Gauge algebra : the deformation of the bracket [[E1, E2]]
(0)

3 is non-trivial if and only

if both of δ(1)
E1

and δ(1)
E2

are non-trivial.
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• Qualitative difference between Flat Space & (A)dS



�(1)
E3
� =

�
@2s�3 + ⇤ @2s�5 + · · ·+ ⇤s�2 @

�
E3 �

• Gravitational couplings
Class I

0 0 0

0 0 0
Class III * *

2s+ 2

2s

2s� 2

�(1)
E1

�(1)
E2

�(1)
E3

#@

⇤

s�s�2

• YM-like couplings
Class I 0 0 0

Class III * *

�(1)
E1

�(1)
E2

�(1)
E3

#@

⇤

2s+ 1

2s� 1

s�s�1

�(1)
E3
� = (@2s�2 + ⇤ @2s�4 + · · ·+ ⇤s�1)E3 �

0= field redefinition

0= field redefinition

General coordinate transf.

YM gauge transf.

• Aragone-Deser No-go

• Fradkin-Vasiliev interactions

• colored gravity in (A)dS !



�(1)
" �

deformation of 

gauge transformation

S(3)

cubic 

interactions

=
0? =

0?
cohomological problem

[["1, "2]]
(0)

deformation of 

gauge algebra

So far, cubic condition : 

Next step ?

�(0)S(3) + �(1)S(2) = 0

• Quartic condition : �(0)S(4) + �(1)S(3) + �(2)S(2) = 0

• Consistency of Algebra ⇒ Global symmetry

(work in progress)



GLOBAL HIGHER SPIN SYMMETRIES
(HIGHER SPIN ALGEBRAS)

Killing Equations for (A)dS background
@(M1

EM2···Ms) = 0

✓  Lie Algebra with bracket [[ , ]](0)

✓  Bracket entirely determined by TT alone

✤  Must satisfy Jacobi identity
⇒ Determine HS algebra and  
     non-Abelian cubic interactions

✤  Must be consistent with �(1)
[E1

�(1)
E2] = �(1)

[[E1,E2]]

⇒ Determine representation and  
     Abelian (class II) cubic interactions

all bracket structures!



Jacobi identity

✓  Lie Algebra Bracket                from                   [[Ei, Ej ]]k S(3)[�i,�j ,�k]

๏  Independent of spectrum (the entire field contents)

✓  Jacobi identity                  [[ [[E[i , Ej ]] , Ek] ]] = 0
cyclic sum

P
` [[ [[E[i , Ej ]]` , Ek] ]]m = 0

i

j

`

m

k๏  Spectrum matters

๏  Explicit structures              [EJ and K. Mkrtchyan]

✓  Vasiliev spectrum: single field for each spin

๏  Uniqueness (Vasiliev algebra)
                     [Boulanger, Ponomarev, Skvortsov, Taronna]

✓  Two more examples of Jacobi



ex. 1 HS algebra in flat-space ?

• Consider spin 2 interacting with HS particles
 From our analysis, [T2 , Ts ] = 0

 “spin 2 cannot be graviton”

• Is it possible that spin 2 interacts with HS 

   through non-Abelian interactions ?

❖  Jacobi imposes [T2 , T2 ] = 0

No “HS algebra” containing Poincaré as sub-algebra 

This is Coleman-Mandula thm. 
but without any assumption on the spectrum !



ex.2 Tensionless limit of ST around (A)dS ?

Let us remark that the couplings of Class II make the fields �2 and �3 charged with respect

to �1 , so they are relevant for HS-algebra multiplets and in general for the classification of

representations of HS algebra. They correspond to the current coupling in [41], since they

can be written as couplings between a gauge field and gauge-invariant Noether current,

generalized Bel-Robinson currents.. The couplings of Class III induce non-trivial defor-

mations �(1)

E
3

, but it vanishes in the flat-space limit. This class includes in particular the

lowest-derivative s�s�2 couplings, namely the gravitational interactions of HS fields: in

(A)dS, the corresponding �(1)

E
3

reproduces the general coordinate covariance for HS fields,

while in the flat-space limit, the latter covariance is lost, so the spin 2 field is found to not

couple gravitationally to HS fields. Therefore, one recognizes the Aragone-Deser problem

[50] and the Fradkin-Vasiliev solution [20, 21] in this framework.

1.3 Organization of paper

The paper is organized as follows. In Section 2 we review the construction of metric-like

HS cubic interactions. In Section 3 we analyze the non-trivial deformations of gauge-

transformation deformations arriving to Table 1. In Section 4 we analyze the gauge-algebra

deformations, while in Section 5 we consider their restriction to global symmetries. In

Section 6 we give some details on the explicit structure of the non-deforming couplings

in (A)dS. Our conclusions, together with discussions on the partially-massless extension

of the classification, are presented in Section 7. The appendices contain some technical

details.

2 Review: cubic interactions

For completeness and in order to fix the notations, we briefly summarize our previous

results. For cubic interactions, that is the n = 3 case of (1.12), the ansatz5 can be further

simplified, removing the ambiguities of integration by parts and field redefinitions, as

S(3)[�1,�2,�3]
TT

=

Z

(A)dS

C(Y, Z)�1(X1, U1) �2(X2, U2) �3(X3, U3)
�

�

�Xi=X
Ui=0

, (2.1)

where C(Y, Z) is a polynomial function of six variables:

Yi := @Ui · @Xi+1

, Zi := @Ui+1

· @Ui�1

[i ' i+ 3] . (2.2)

When one of the fields, say �1, is massless, the cubic interaction must be compatible

with the corresponding gauge symmetry: �(0)

E
1

S(3) + �(1)

E
1

S(2) = 0 . This condition implies

a weaker condition: �(0)

E
1

S(3) ⇡ 0 , where ⇡ is henceforth the equivalence modulo free field

equations as well as traces and divergences. The latter condition can be translated into

the following di↵erential equation:

⇥

Y2 @Z
3

� Y3 @Z
2

� �
�

Y2 @Y
2

� Y3 @Y
3

+ µ
2

�µ
3

2

�

@Y
1

⇤

C(Y, Z) = 0 . (2.3)

5Here, we use the convention that all the fields entering in the interactions are treated as di↵erent fields,

so that no symmetry under field-label interchange is assumed. This convention makes more transparent

the analysis of the present work, while it is equivalent to the convention of a single generating function of

HS fields. Hence, the results obtained in this convention can also account for the self-interaction cases.
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Generic cubic interactions

extensions). To conclude the discussion of (A)dS global symmetries, let us consider the

gauge-algebra deformation induced by the cubic interaction associated with the coupling

function:

K(Y,G) =
1

g
eY1

+Y
2

+Y
3 , (5.32)

which does not involve any G dependence, and generates only the highest derivative cou-

plings for each s1�s2�s3. The corresponding cubic interaction takes the form:

C = e�D K =
1

g
eY1

+Y
2

+Y
3

+� (Z
1

+Z
2

+Z
3

) , (5.33)

which resembles the cubic interaction for the excitations of the first Regge trajectory of the

open bosonic string (for simplicity we do not explicitly write down Chan-Paton factors):

C ⇠ 1

go
eY1

+Y
2

+Y
3

+ 1

↵0 (Z1

+Z
2

+Z
3

) . (5.34)

Interestingly, the gauge-algebra deformation induced by (5.33) gives exactly the Moyal

bracket:
⇥⇥

Ē a
1 , Ē b

2

⇤⇤c
(X,U) = ⇧E (dcab sinhG3 + f c

ab coshG3) Ē
a
1 (X1, U1) Ē

b
2 (X2, U2)

�

�

�Xi=X
Ui=U

,

(5.35)

where we have reinstated Chan-Paton factors and the corresponding internal structure

constants — totally symmetric dabc and totally antisymmetric fabc . If the Killing tensors

were traceful tensors (so that we do not insert the projector ⇧E), then the latter would

be a good bracket that does even satisfy the Jacobi identity. Notice however that in a

setting where finitely many irreducible fields are present for given spin (as in the Vasiliev

theory), one should consider only traceless tensors, so that the coupling (5.33) does not

actually fulfil the Jacobi identity on traceless tensors. Nevertheless, it is still challenging to

reconsider this type of coupling in a HS theory with reducible spectrum [56–62]. Actually,

such a reducible theory is a natural candidate for the tensionless limit of the first Regge-

trajectory of the open bosonic string.

Flat space

Let us consider now the case of flat-space interactions where the bracket is given by

Fs
3

s
1

s
2

=
1

4
(@Y

1

@Z
1

+ @Y
2

@Z
2

)
s
min

X

n=0

kn
Y s

1

�n
1

(s1 � n)!

Y s
2

�n
2

(s2 � n)!

Y s
3

�n
3

(s3 � n)!

[G(Y, Z)]n

n!
. (5.36)

One can again remove Z1, Z2 by (5.18) and replace the Y3-dependence by B . However, at

this time, Y3 and B can appear alone (not always in the combinations Y3 Z3 and B Z3 ,

respectively). The general form of the consistent bracket structure can be derived also for

the flat-space case, and it reads

Fs
3

s
1

s
2

(Y1, Y2, B Z3, B) = Fs
3

s
1

s
2

(G3, H3, B) . (5.37)

One can notice that, compared to the (A)dS case (5.20), the flat-space brackets may also

depend on B in addition to G3 and H3 . Before continuing our discussions, let us provide

some examples for more concrete understanding:
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• Cubic interactions of massive HS fields 

   in 1st Regge traj. open bosonic string theory

• Cubic interactions of massless HS fields in (A)dS

   with the choice of coupling fn

C(Y, Z) = e�(Z1@Y2@Y3+Z1Z2@Y3@G+cyc.+Z1Z2Z3@
2
G)K(Y,G)

���
G=YiZi

Gauge inv. cubic interactions

C =
1

g
eY1+Y2+Y3+�(Z1+Z2+Z3)

K(Y,G) = 1
g e

Y1+Y2+Y3
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• Cubic interactions of massive HS fields 

   in 1st Regge traj. open bosonic string theory

• Cubic interactions of massless HS fields in (A)dS

   with the choice of coupling fn

C =
1

g
eY1+Y2+Y3+�(Z1+Z2+Z3)

K(Y,G) = 1
g e
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‣ gives HS algebra given by Moyal product (so satisfy Jacobi)

‣ in the condition that the HS fields are reducible !

  Reducible HS spectrum do appear in  
       the BRST formulation of a tensionless limit of ST 



THANK YOU

Summary
• All cubic interactions of 
   massive and (partially-)massless HS fields

• Full classification of massless interactions

• All bracket structures of HS algebra

Outlook
• Higher order interactions (work in progress)

• AdS/CFT computations, CFT bootstrap program

• Generalization to fermions and mixed-sym. fields


