

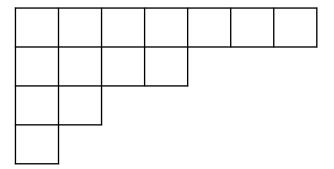
A Review of Higher Spin Field Theory

Euihun JOUNG 정의헌 (SNU & IBS)

Higher Spins

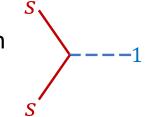
- Hadronic excitations
- Higher excitations in String Theory

Can a better field-theoretical understanding of higher spins give useful lessons to String (Field) Theory?


Massive Higher Spins

Around **flat d** dimensions, massive little group: SO(d-1)

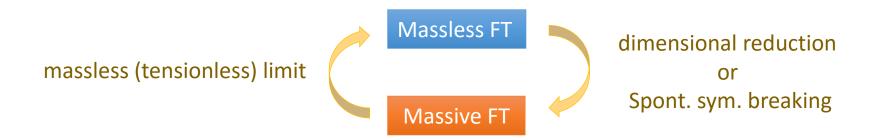
In d=4, only symmetric YD rep



In d>4, various mixed-symmetry YD rep

Let us focus first on symmetric massive Higher Spin fields

- ❖ Free Lagrangian by Singh Hagen in '74
- Consistent Interactions?
 - Minimal EM interaction to charged massive HS
 - \checkmark Required non-minimal $F_{\mu\nu}$ interaction \rightarrow Causality Problem


- \checkmark String theory gives higher F^n interactions
- Causality of $F_{\mu\nu}$ or $R_{\mu\nu\varrho\sigma}$ interactions requires <u>infinitely many</u> massive HS

Other consistency of **massive** interactions?

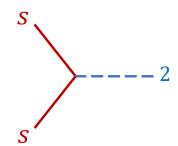
Even, classical consistency of DoF is not obvious

- ❖ Simplest example of "higher spin" → spin two
 - Massive spin-two interaction problem → Massive Gravity
 - Consistent massive gravity potential term is very restrictive,
 but it turned out to be natural ones from massless gravity viewpoint
- Massless theory may give a hint

Basic features and Novelties of massless higher spin dynamics

Massless Higher Spins and Their Interactions

Massless (symmetric) Higher Spins

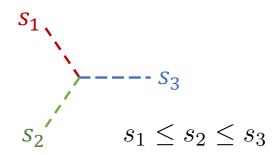

Free Lagrangian by Fronsdal '78 (via massless limit of massive HS)

$$S_{\text{Fronsdal}} = \int d^d x \, \varphi^{\mu_1 \cdots \mu_s} \left(\Box + \cdots \right) \varphi_{\mu_1 \cdots \mu_s}$$

- Gauge Symmetry: $\delta \varphi_{\mu_1 \cdots \mu_s} = \partial_{(\mu_1} \varepsilon_{\mu_2 \cdots \mu_s)}$
- Subtlety of Trace Constraints
 - Equivalent formulation w/o trace constraints (inspired by SFT)
- Consistent Interactions?
 - Various problems such as Weinberg '64 (No long range interaction of HS)
 - Gauge Invariance (with a nonlinear deformation)

Gravitational minimal interaction of massless spin s

- o Fronsdal Lagrangian w/ covariant derivatives: $\mathcal{L}_{\mathrm{Fronsdal}}(\varphi, \nabla \varphi)$
- ✓ Manifestly invariant under diffeomorphism
- ✓ Invariance under HS gauge transform?

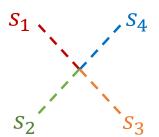

- In principle, terms from $\left[\nabla_{\mu},\nabla_{\nu}\right]\sim R_{\mu\nu\rho\sigma}$
- s=1: no such term \rightarrow Spin 1 is 'matter' w.r.t Gravity
- s=3/2: term prop to $R_{\mu\nu} \to \text{Compensate by } \delta(\sqrt{g} \ R)$ with $\delta g_{\mu\nu}$ Spin 3/2 and 2 in a SUSY multiplet
- s>2: term prop to $R_{\mu\nu\rho\sigma}$ \rightarrow Impossible to save HS gauge sym

Incompatibility between **Diffeomorphism** and HS gauge symmetry

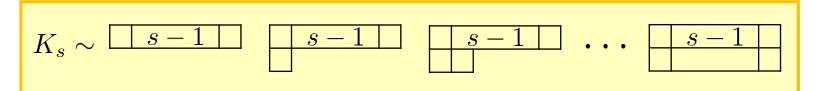
Construction of gauge invariant interaction vertices

Perturbative expansion

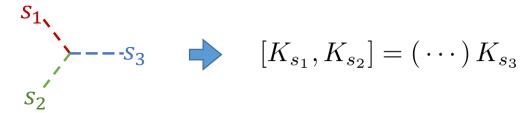
$$S = S_0 + S_1 + \cdots$$
$$\delta \varphi = \partial \varepsilon + T_1(\varphi, \varepsilon) + \cdots$$


Gauge invariant cubic vertices

$$S_1 = \sum_{n=0}^{s_1} g_{s_1 + s_2 + s_3 - 2n} V_{\underline{s_1 + s_2 + s_3 - 2n}} - \# \text{ of } \partial$$


Diffeomorphism

Consistent cubic interactions are higher derivative types


Consistent quartic vertices: seemingly, nothing local

- One way to see this → Global Sym
 - \checkmark Generator fixed by Killing eq, $\partial \varepsilon = 0$

✓ Bracket fixed by cubic vertices

✓ Quartic consistency → Jacobi idenitity

Impossible → No massless HS interactions in FLAT SPACE

★ Lesson: HS interactions ← Higher derivatives (dim.ful parameter)

Massive HS and/or Massless HS in (A)dS

Mass and Cosmological Const. play somewhat similar role

Gauge invariant cubic vertices in (A)dS

$$S_1 = \sum_{n=0}^{s_1} g_{s_1+s_2+s_3-2n} V_{\underline{s_1+s_2+s_3-2n}}$$
 Max # of ∇

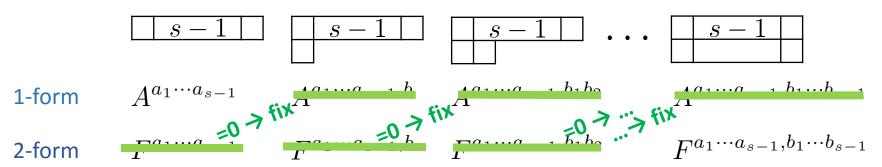
- Very analogous to flat space case
- Important difference:

$$S$$
-S-2 V_{2s-2} V_{2s} V_{2s+2} $\sim (\nabla \varphi_s)^2 + \frac{W}{\Lambda} \left(\varphi_s \nabla^2 \varphi_s \right) + \dots + \frac{W}{\Lambda^{s-2}} \left(\varphi_s \nabla^{2s-4} \varphi_s \right)$

Higher Spin Algebra

❖ What is it?: Lie algebra generated by

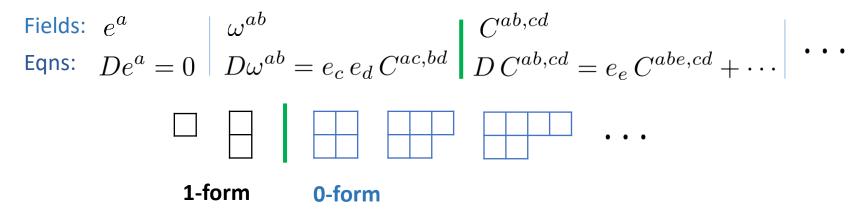
- ❖ Does this sym exists? If not, the quartic consistency would fail even in (A)dS
- **❖ Vasiliev's HS Algebra '87**
 - Various Equivalent Definitions
 - Star product algebra in a certain oscillator space
 - Maximal quotient of UEA of so(2,d) (relation to min orbit)
 - Maximal symmetry of free conformal scalar in d-1 dim!
 - Contains all even (and odd) spin generators
 - Flato-Fronsdal

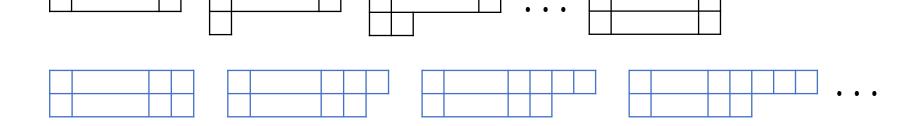

$$\operatorname{Rac} \otimes_{(\operatorname{sym})} \operatorname{Rac} = \bigoplus_{\operatorname{even} s, (\operatorname{odd} s)} D(s+d-2,s)$$

Towards a Full Nonlinear Theory of Massless Higher Spins

Higher Spin Gravity

1st order formulation of Higher Spins


- ❖ 1st order formulation of massless spin s


- This step also gives EoM → difficult to disentangle EoM and Constraints
- Fradkin Vasiliev construction $S = \int \sum_{r=0}^{s-1} \frac{a_r}{\Lambda^r} (F^{(s-1,r)})^2$
 - ✓ Inconsistent for Quartic Order

Unfolded Equations

- Universal treatment of EoM & Constraints
- ❖ No privilege to metric
- Gravity ex.

❖ Spin s

0-form field C_I Twisted Adj rep generated by K^I

s = 0		•		
s=1	•			
s=2				
s=3				
s=4				

1-form field A^I Adjoint rep of HS algebra generated by K_I


Ansatz for nonlinear HS equations

$$dA^{I} + f_{JK}^{I}(C) A^{J} A^{K} = 0$$
$$dC_{I} + g_{IK}^{J}(C) C_{J} A^{K} = 0$$

- Frobenius condition \rightarrow impose conditions on $f_{JK}^I(C)$ and $g_{JK}^J(C)$
 - Free Differential Algebra (FDA)
 - Infinite dimensional Lie Algebroid
- Vasiliev identified on $f_{IK}^I(\mathcal{C})$ and $g_{IK}^J(\mathcal{C})$ up to $O(\mathcal{C}^3)$ ['88, '89]

"Vasiliev's Equations" ['90]

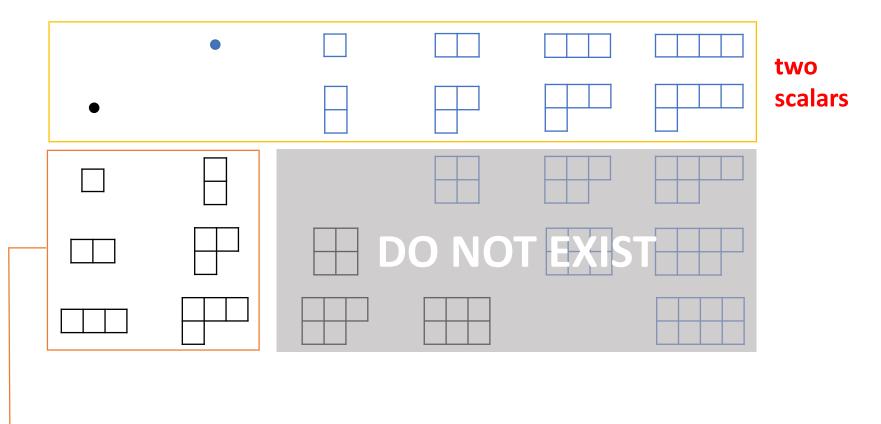
- Similar eqns which **GENERATE** $f_{IK}^I(\mathcal{C})$ and $g_{IK}^J(\mathcal{C})$
- Key ideas: extend ("double") the fiber, s.t " f_{JK}^{I} and g_{IK}^{J} " become cost but, fields are subjects to algebraic constraints

Vasiliev's Equation in 4d

 \Leftrightarrow HS algebra realized by oscillators $Y_A Y_B$, $Y_A Y_B Y_C Y_D$, ...

$$A^I \rightarrow A(Y)$$
 $C_I \rightarrow C(Y)$

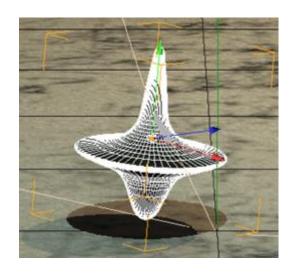
- \diamond Doubling of oscillator space: A(Y,Z), C(Y,Z), $S_A(Y,Z)$ new fields
- The Equations

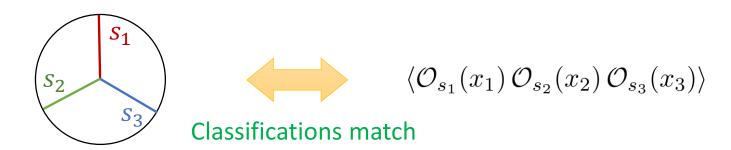

$$dA + A \star A = 0$$
 $dC + [A * C] = 0$ $dS_{\alpha} + [A * S_{\alpha}] = 0$

Algebraic
$$[C \, {}^{\star}\!\!\!, S_{\alpha}] = 0$$
 $[S_{\alpha} \, {}^{\star}\!\!\!, S_{\beta}] = \epsilon_{\alpha\beta} (1 + e^{i\,\Theta_{\star}(C)}_{\star} \star C)$

- Interaction Ambiguity $\Theta_{\star}(C) = \theta_0 + \theta_2 C^{\star 2} + \cdots$
 - Parity invariance $\rightarrow \theta_0 = 0$ or π , $\theta_{n>0} = 0$
- ❖ A few exact solutions

No action principle yet


Higher Spin Theories in 3d


- \Leftrightarrow sl(n,R) \oplus sl(n,R) CS \Rightarrow Theory of massless spin 2,3,...,n
- ❖ 3d Vasiliev Eq → Theory of massless spin 2,3,...,∞ and two scalars
 Can be viewed as CS gauge sector coupled to matter sector

AdS/CFT conjectures Involving higher spin gravity

Higher Spin Holography

AdS_{d+1}	CFT_d
Field contents	Single trace operators
Fields of mass M & spin s	• Operators of dimension Δ & spin s
 Massless spin s fields 	• Spin s conserved current operators
Cubic Interactions	3pt functions

- \clubsuit Holography for HS gravity in AdS_{d+1} with $d \ge 3$
 - HS sym: max sym of conf scalar (CFT_3 with HS sym \rightarrow only free scalar/spinor)
 - Flato-Fronsdal: operators bilinear in $\phi \to \text{Conserved currents of any spins}$

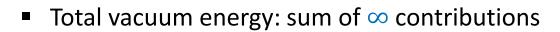
$$AdS_{d+1}/CFT_d$$
 $(d \ge 3)$

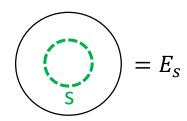
■ U(N)/O(N) Scalar Vector Model ⇔ (Non)-minimal Vasiliev Theory

AdS_4/CFT_3

- Spinor Vector Model \Leftrightarrow Vasiliev Theory with $\theta_0 = \pi$
 - ✓ Test for a large class of 3pt functions
- Critical Models ⇔ AdS scalar with different BC
- Parity violating Vasiliev Theory with $\theta_0 \Leftrightarrow$ CS coupling to 3d CFT
 - ✓ Test for a few 3pt fns, but not conclusive
- Open question: Vasiliev theory with other θ_n ?

AdS_3/CFT_2


- lacktriangle Background of 3d Vasiliev theory, parametrized by λ
- HS sym: $hs(\lambda) = UEA(sl_2)/C_2(\lambda)$
- Asymptotic symmetry: $W_{\infty}(\lambda)$
 - Nonlinear sym (not a Lie algebra)
 - Does not contain $hs(\lambda)$
- Duality: Vasiliev theory $\Leftrightarrow W_N$ minimal model CFT
 - ✓ Test for spectrum and a few 3pt functions
- BH-like solutions in HS CS theory


1 Loop Test for HS AdS/free CFT

❖ Dictionary: 1 Loop in AdS ⇔ 1/N in CFT

Free CFT	HS Gravity in AdS
No 1/N Correction	No Loop Correction?

❖ Test for Vacuum Energy

o For non-minimal model:
$$\sum_{all\ s} E_s = 0$$

o For minimal model:
$$\sum_{even s} E_s = E_{bd \ scalar}$$

■ 5d HS Gravity dual to free spin 1 in 4d : N→N-2

Comments on Other Topics / Recent Progress

Other Topics

- Other Formulation
 - BRST related
 - Tensorial space
 - Other metric-like form.
 - World-Line formalism

- Extensions of Vasiliev's Eq
 - SUSY
 - Color Decoration
 - Higher Form

- Other Spectra
 - Mixed Sym HS
 - Partially Massless and Massive HS
 - Conformal HS
 - Non-Relativistic HS
- ❖ Relation to String Theory
 - Tensionless Limit
 - WS proposal

Recent Progress

- ❖ Better understanding of Vasiliev's Equation
 - Explicit derivation of cubic vertices
 - Holographic identification of one nonlocal quartic vertex

Generalizations

- Extension of HS Algebras to Multi-Ptcl. & Partially Massless ones
- Various Properties of Conformal HS
- Holography for Stringy Extensions
- Rainbow Vacua of Colored (HS) Gravity

Thank You for the Attention