Recent Progresses in Higher Spin Gravity

Research Summary, APCTP, Nov. 2019 정의헌 경희대학교

An overview of "old things"

- Set of equations for free spin s [Fierz-Pauli 39, ...]
- Lagrangian for free spin s [Singh-Hagen 74, Fronsdal 78, ...]
- Interaction problems
 - No-go for massless HS [Weinberg 64, Coleman-Mandula 67, ...]
 - A few ex. of cubic interactions [Berends-Burgers-van Dam 84, ...]
 - Light-cone approach for cubic interactions (and quartic) [Bengtsson^2-Brink 83, Fradkin-Metsaev 91, ...]
 - Frame-like approach [Fradkin-Vasiliev 87,...]
 - ✓ Unfolding [Vasiliev, ...]
 - ✓ "Vasiliev equation" [Vasiliev 90, ...]

An overview of "old things"

- New Activities
 - Vasiliev equations [Sezgin, Sundell et al]
 - HS aspects of AdS/CFT [Klebanov-Polyakov, Sezgin-Sundell, ...]
 - New formulations of free HS and cubic interactions [...]
 - Various Generalizations [...]
 - Conformal HS Gravity [Fradkin-Linetsky 89, ... , Segal 04, ...]
- Higher spin holography
 - AdS4/CFT3 [Giombi-Yin 10, ...]
 - AdS3/CFT2 [..., Gaberdiel-Gopakumar 11, ...]

Massless (symmetric) Higher Spins

Free Lagrangian by Fronsdal '78 (via massless limit of massive HS)

$$S_{\text{Fronsdal}} = \int d^d x \, \varphi^{\mu_1 \cdots \mu_s} \left(\Box + \cdots \right) \varphi_{\mu_1 \cdots \mu_s}$$

- Gauge Symmetry: $\delta \varphi_{\mu_1 \cdots \mu_s} = \partial_{(\mu_1} \, \varepsilon_{\mu_2 \cdots \mu_s)}$
- Global symmetry:
 - ✓ Generator fixed by Killing eq, $\partial \varepsilon = 0$

- ✓ Bracket fixed by cubic vertices
- ✓ Jacobi id. **cannot** hold in **FLAT SPACE d>4**

→ Gauge invariance breaks down at quartic interactions

- Higher Spin in (A)dS
 - Jacobi id. does hold → HS Algebra
 - Contains all even (and odd) spin generators

- Various Equivalent Definitions of HS Algebra
 - Star product algebra in a certain oscillator space
 - Maximal quotient of UEA of so(2,d) (Joseph ideal)
 - > Deformation quantization of minimal coadjoint orbit
 - Maximal symmetry of free conformal scalar in d-1 dim!
- Flato-Fronsdal

$$\operatorname{Rac} \otimes_{(\operatorname{sym})} \operatorname{Rac} = \bigoplus_{\operatorname{even} s, (\operatorname{odd} s)} D(s + d - 2, s)$$
massless spin s rep

1st order formulation of Higher Spins

1st order formulation of massless spin s

- This step also gives EoM → difficult to disentangle EoM and Constraints
- Fradkin Vasiliev construction

$$S = \int \sum_{r=0}^{s-1} \frac{a_r}{\Lambda^r} \, (F^{(s-1,r)})^2$$

✓ Inconsistent for Quartic Order

Unfolding

- Universal treatment of EoM & Constraints
- No privilege to metric
- Gravity ex.

Fields: e^a ω^{ab} $C^{ab,cd}$ Eqns: $De^a = 0$ $D\omega^{ab} = e_c e_d C^{ac,bd}$ $DC^{ab,cd} = e_e C^{abe,cd} + \cdots$ \cdots 1-form 0-form Spin s └── • • • ↓

0-form field C_I **Twisted Adj** rep generated by K^I

1-form field A^I Adjoint rep of HS algebra generated by K_I

Unfolded equations for HS gravity

$$d A^{I} + f^{I}_{JK}(C) A^{J} A^{K} = 0$$

 $d C_{I} + g^{J}_{IK}(C) C_{J} A^{K} = 0$

- Integrability condition \rightarrow impose conditions on $f_{IK}^{I}(C)$ and $g_{IK}^{J}(C)$
 - $\succ f_{JK}^{I}(0)$: HS algebra structure constant
 - $\succ g_{IK}^J(0)$: Twisted Adjoint Representation
 - Infinite dimensional Lie Algebroid
- Vasiliev identified on $f_{IK}^{I}(C)$ and $g_{IK}^{J}(C)$ up to $O(C^{3})$ ['88, '89]

Vasiliev's Equation in 4d

↔ HS algebra realized by oscillators $Y_A Y_B$, $Y_A Y_B Y_C Y_D$, ...

 $A^I \to A(Y) \qquad C_I \to C(Y)$

- ✤ Doubling of oscillator space: A(Y,Z), C(Y,Z), $S_A(Y,Z)$ new fields
- The Equations

 $dA + A \star A = 0 \qquad dC + [A^{\star}, C] = 0 \qquad dS_{\alpha} + [A^{\star}, S_{\alpha}] = 0$ Algebraic $[C^{\star}, S_{\alpha}] = 0 \qquad [S_{\alpha}^{\star}, S_{\beta}] = \epsilon_{\alpha\beta}(1 + e_{\star}^{i\Theta_{\star}(C)} \star C)$ constraints

- Z dependent part is yet another set of auxiliary fields
 - Solve the equation along Z direction \rightarrow Recover the unfolded eq.
 - Homotopy integral

Issues of Non-Locality

- String Theory
 - HS gravity as tensionless string \rightarrow highly non-local
- Bottom-Up Approach
 - Cubic interaction: Local
 - Quartic interaction (holographic reconstruction): Non-local
- Vasiliev equation
 - Divergent 3pt amplitudes [Giombi-Yin 10, ...]
 - Divergent cubic interactions [Boulanger-Kessel-Skvortsov-Taronna 15]

Issues of Non-Locality

Unfolded equation of HS

 $dA + A \star A + V_3(C, A, A) + V_4(C, C, A, A) + \dots = 0$

 $dC + A \star C - C \star A + W_3(C, C, A) + W_4(C, C, C, A) + \dots = 0$

- Perturbative expansion around AdS background
 - Cubic: $V_3(C,\eta,\Omega), V_4(C,C,\Omega,\Omega), W_3(C,C,\Omega),$
 - Quartic: $V_3(C, \eta, \eta), V_4(C, C, \eta, \Omega), V_5(C, C, \Omega, \Omega),$ $W_3(C, C, \eta), W_4(C, C, C, \Omega)$
- Locality [Vasiliev et al 16~19]
 - A restricted form of V_n, W_n
 - Use of different homotopy \rightarrow Local V_3, V_4, W_3

Interactions in Unfolded Equations

Unfolded equation of HS

 $dA + A \star A + V_3(C, A, A) + V_4(C, C, A, A) + \dots = 0$

 $dC + A \star C - C \star A + W_3(C, C, A) + W_4(C, C, C, A) + \dots = 0$

Deformation problem

- Deformation of ∞-dim Lie algebra to Lie algebroid
- Deformation of ∞-dim Poisson structure
- Deformation of L_{∞} -algebra and A_{∞} -algebra
- A_{∞} -algebra deformation from a deformation of "extended" HS algebra [Sharapov-Skvortsov]

→ Generate all order interactions

Summary of my recent works

- ✤ HS Algebra
 - Minimal Orbit, Howe Duality & Structure Constants

[w/ Mkrtchyan 14, 16]

- Character Method [w/ Basile, Bekaert 18]
- Curious Observation:
 Conformal HS Gravity = HS Algebra [w/ Basile, Bekaert 18]
- On-going works
 - Unfolded Equation & Action for 3d HS Gravity
 - Unfolded Equation for Conformal HS Gravity
 - Issues of (non-)locality
 - Non-minimal Coadjoint Orbits & Its Quantization (and its relation to deformation of HS algebra)