양자, 중력 그리고 무한대

Quantum Mechanics

Variational Problem

Minimal Surface

Lagrange

Variational Problem

- Newton's equation from variational problem
- Euler-Lagrange equation

Minimize (or maximize)

[(Potential Energy) - (Kinetic Energy)] x (Time)

Action (Lagrangian) S = [Energy]x[Time]

Shortest path

How an ant knows the shortest path?

Shortest path.

Quantum Mechanics

Sum over paths with weight $e^{\frac{i}{\hbar}S}$ (Feynman path integral)

Quantum Mechanics

- Wave nature: e^{iS} Interference!
- [Energy] \iff [Time] conversion ratio
 - [Energy]x[Time]= \hbar
- [Time] \iff [Length] conversion ratio
 - [Length]/[Time]=*c*
- [Mass] \iff [Length] conversion ratio
 - [Mass]x[Length]= \hbar/c

Classical Mechanics

Minimum energy is 0

Quantum Mechanics

Minimum energy is not 0!

Quantum EM field

Casimir Effect

Casimir Effect

Minimum (vacuum) energy of each wave mode is not 0!

Casimir Effect

Infinitely many modes!

Casimir Energy

- Each mode has a finite vacuum energy $E_n^{\text{vac}} = C \hbar n$
- Total vacuum energy: $E_{\text{tot}}^{\text{vac}} = \sum_{n=1}^{\infty} E_n^{\text{vac}} = C \hbar \left[\sum_{n=1}^{\infty} n \right]$
- Infinity occurs at 0 distance (or ∞ energy)

Ramanujan summation

$$c = 1 + 2 + 3 + 4 + 5 + 6 + \cdots$$

 $4c = 4 + 8 + 12 + \cdots$
 $c - 4c = 1 - 2 + 3 - 4 + 5 - 6 + \cdots$

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \cdots$$

$$1 + 2 + 3 + 4 + \dots = -\frac{1}{12}$$

Consistent with observation!

Where has 🗢 gone?

- ∞ shift of zero-point energy
- zero-point energy: mere constant?
- It affects gravity!

Quantized Field → Particle

Interacting fields

Photon

W boson

Electron

© from interaction

Quantum Effect

- ∞ occurs because particles have zero size
- Remove ∞ by ∞ shift of charge and mass (Renormalization)

© from interaction

- g-factor (magnetic dipole moment)
 - $g_{\text{experiment}} = 2.002 \ 331 \ 841 \ 16(13)$
 - $g_{\text{theory}} = 2.002\ 331\ 836\ 20(86)$

Dirac's bubble electron

- Bubble has a finite size (a possible remedy of ∞)
- Excitations as different particles

Gravity

General Relativity

General Relativity

General Relativity

- Field: metric of spacetime
 - Tells how much spacetime is curved
 - Non-trivial dynamics
 - Quantization → Graviton

Singularities

- Singularities(∞) are inevitable in General Relativity
 - Black hole, Big Bang
 - Suggest Incompleteness of GR

Big Bang

Black Hole

$$\frac{1}{2}mc^2 = G_N \frac{Mm}{R_H} \qquad \clubsuit \qquad R_H = \frac{2G_N M}{c^2}$$

Quantum Gravity

Gravity as a field

W boson

Electron

Graviton

Quantizing Gravity

- QM \rightarrow [Length]x[Mass]= \hbar/c
- Gravity \rightarrow [Length]/[Mass]= G_N/c^2
- Quantum Gravity has a length scale (Planck length)

- Quantum effects: $(\ell_P E)^2, (\ell_P E)^4, \cdots$
- ∞ numbers of $\infty \rightarrow \infty$ number of shifts (∞ new parameters)
- GR should be modified at high energy

Quantizing Gravity

- Quantum effects arise from virtual particles
- Summation over virtual particles
 - Typically, ∞ add up
 - Sometimes, ∞ partially cancels (Super Gravity)

String Theory

- String has a finite size \rightarrow No ∞ arises
- Excitations of string as different particles
 - Include massless particles like photon, graviton etc
 - ∞ amount of massive particles

String Theory

- ∞ from ∞ amount of virtual particles completely cancel out
- $\infty + 2\infty + 3\infty + \ldots = 0$

Massless Particles

- Massless particles are special
 - Spin 1 massless particles → Gauge theory
 - Spin 2 massless particles → Gravity
- What about higher spin massless particles?
 - a single spin>2 massless particle is not consistent
 - In fact, we need ∞ many higher spin massless particles

Higher Spin Gravity

- An extension of GR with ∞ higher spin particles
- Non-locality (finite size) like in String Theory
- Complete cancelation of ∞ in its vacuum energy

➡ A candidate for Quantum Gravity

• Interesting mathematical structure